

ОТЧЕТ

ПРОБЛЕМЫ НЕЛОКАЛЬНОЙ МЕХАНИКИ

Автор: Потапов В.Д.

г. Москва 2013 В последние годы в литературе широко обсуждается вопрос о нелокальном демпфировании материала и его влиянии на динамическое поведение и устойчивость различных деформируемых систем. Эта проблема важна в тех случаях, когда конструкции выполнены из композитных и нано-материалов, о чем свидетельствуют публикации [1, 2, 4, 6 7, 10 - 14, 16 - 19].

Однако работы, которые выполнялись бы в той же постановке, которая предлагается в настоящем проекте, автор не встречал.

На примере стержня, заделанного по концам, исследуется движение и его устойчивость в том случае, когда материал характеризуется нелокальным демпфированием. Стержень находится под действием продольных сил и поперечной нагрузки, детерминированных или случайным образом меняющихся во времени. В детерминированном случае устойчивость понимается в смысле Ляпунова, в случае стохастической постановки - устойчивость почти наверное. И в том, и в другом случае для анализа устойчивости используется метод максимального показателя Ляпунова.

1. Введение

На примере стержня, заделанного по концам, исследуется движение и его устойчивость в том случае, когда материал характеризуется нелокальным демпфированием. Стержень находится под действием продольных сил и поперечной нагрузки, детерминированных или случайным образом меняющихся во времени. Стохастическое параметрическое возбуждение принимается в виде "цветного"стационарного шума. "Цветные"шумы рассматриваются как результат прохождения белого шума через линейные фильтры или в виде канонических разложений, если спектральная плотность отличается от дробнорациональной функции. Поскольку речь идет даже в простейших случаях, как правило, о многоразмерных системах, то основное внимание уделяется численным методам решения задачи. В детерминированном случае устойчивость понимается в смысле Ляпунова, в случае стохастической постановки устойчивость почти наверное. И в том, и в другом случае для анализа устойчивости используется метод максимального показателя Ляпунова.

В работе [7] исследуется влияние нелокального демпфирования (пространственного и временного гистерезиса) на формы и частоты собственных колебаний стержней и прямоугольных пластин. При этом операторы внешнего L_e и внутреннего L_i демпфирования принимались в виде

$$L_e \mathbf{u}(\mathbf{r}, t) = \int_{\Omega} \int_0^t C_e(\mathbf{r}, \theta, t - \tau) \mathbf{u}(\theta, \tau) d\tau d\theta,$$
$$L_i \mathbf{u}(\mathbf{r}, t) = \int_{\Omega} \int_0^t C_i(\mathbf{r}, \theta, t - \tau) L_s[\mathbf{u}(\theta, \tau)] d\tau d\theta,$$

где $\mathbf{u}(\mathbf{r}, t)$ - вектор перемещения, \mathbf{r} - вектор координат рассматриваемой точки, t - время, $C_e(\mathbf{r}, \theta, t-\tau)$ и $C_i(\mathbf{r}, \theta, t-\tau)$ - ядра операторов, характеризующих соответствующее демпфирование.

Внешнее демпфирование зависит только от перемещений, а внутреннее демпфирование кроме того зависит также от напряжений, что выражается через пространственные производные от вектора перемещений и учитывается оператором L_s . Ядра $C_e(\mathbf{r}, \theta, t - \tau)$ и $C_i(\mathbf{r}, \theta, t - \tau)$ имели форму

$$C_i(\mathbf{r}, \theta, t - \tau) = H_i(\mathbf{r})c_i(\mathbf{r} - \theta)g_i(t - \tau),$$

$$C_e(\mathbf{r}, \theta, t - \tau) = H_e(\mathbf{r})c_e(\mathbf{r} - \theta)g_e(t - \tau).$$

Для нелокального вязкого демпфирования (пространственного гистерезиса) в одномерном случае предложено соотношение

$$C_i(x,\theta,t-\tau) = H(x)C(x-\theta)\delta(t-\tau),$$

причем $\delta(t-\tau)$ - дельта - функция.

Функция $C(|x - \theta|)$ - считается нормализованной, т. е. $\int_{-\infty}^{\infty} C(|x|) dx = 1$. По-видимому, впервые модель нелокального демпфирования (пространственный гистерезис) была предложена в работе [2].

Подобная модель оказывается эффективной при анализе динамичиского поведения конструкций из композитных- и нано-материалов. Если для описания демпфирования материала используются соотношения вязкоупругости, то модель нелокальной вязкоупругости, разработанная на основе модели нелокальной упругости была предложена [1].

2. Постановка задачи

Обычно при исследовании динамики упругих систем с учетом конструкционного демпфирования используется зависимость между напряжениями и деформациями в виде

$$\sigma(x,t) = E[\varepsilon(x,t) + \gamma \ \partial \varepsilon(x,t) / \partial t].$$

Это соотношение получено на основании гипотезы Фойгта. Обобщением указанной зависимости для случая некоторых композитных и

наноматериалов является интегро-дифференциальное соотношение

$$\sigma(x,t) = E\left[\varepsilon(x,t) + \gamma \int_{0}^{l} C_{v}(|x-x'|)\dot{\varepsilon}(x',t) \, d\, x'\right],\tag{1}$$

где γ - const, $C_v(|x - x'|)$ ядро нелокального демпфирования. Точкой обозначена производная по времени t. Функция $C_v(|x-x'|)$) нормализуется из условия

$$\int_{-\infty}^{\infty} C_v(x) \, dx = 1.$$

В качестве функций $C_v(|x-x'|)$ принимаются разные функции. Одной из них (наиболее распространенной) является экспоненциальная функция

$$C_v(|x - x'|) = \frac{\eta}{2}e^{-\eta|x - x'|},$$

где η - const.

Интересно, что в этом случае интегральное соотношение (1) может быть сведено к дифференциальному уравнению в частных производных. Для этого интеграл в правой части нужно представить в виде суммы

$$\int_{0}^{l} e^{-\eta |x-x'|} \dot{\varepsilon}(x',t) \, d\, x' = \int_{x}^{l} e^{\eta (x-x')} \dot{\varepsilon}(x',t) \, d\, x' + \int_{0}^{x} e^{-\eta (x-x')} \dot{\varepsilon}(x',t) \, d\, x'.$$

Дважды дифференцируя обе части равенства (1) по x и вычитая из полученного результата соотношение (1), предварительно умноженное на η^2 , придем к уравнению

$$\frac{\partial^2 \sigma}{\partial x^2} - \eta^2 \sigma = E \frac{\partial^2 \varepsilon}{\partial x^2} - \eta^2 E \varepsilon - \gamma \eta^2 \frac{\partial \varepsilon}{\partial t}.$$

Изгибающий момент в сечении изгибаемого стержня определяется выражением

$$M(x,t) = -EJ\left[\frac{\partial^2 w(x,t)}{\partial x^2} + \gamma \int_0^l C_v(|x-x'|) \frac{\partial^3 w(x',t)}{\partial x'^2 \partial t} \, dx'\right],$$

где w(x,t) - прогиб стержня, EJ - изгибная жесткость стержня.

Если не учитывать внешнее демпфирование, то для весомого стержня, находящегося под действием продольной силы F(t), должно соблюдаться уравнение равновесия

$$\frac{\partial^2 M(x,t)}{\partial x^2} = m \frac{\partial^2 w(x,t)}{\partial t^2} + N \frac{\partial^2 w(x,t)}{\partial x^2} - q(x,t).$$

Здесь m - погонная масса стержня, N(x,t) = F(t) - нормальная сила в сечении стержня.

Подставляя в левую часть выражение второй производной по x от момента M(x,t), приходим к уравнению относительно функции прогиба w(x,t)

$$\frac{\partial^2 w(x,t)}{\partial t^2} + \frac{N(x,t)}{m} \frac{\partial^2 w(x,t)}{\partial x^2} + \frac{EJ}{m} \left[\frac{\partial^4 w(x,t)}{\partial x^4} + \gamma \int_0^t C_v(|x-x'|) \frac{\partial^5 w(x',t)}{\partial x'^4 \partial t} \right] = \frac{q(x,t)}{m}.$$

Решение этого уравнения должно удовлетворять граничным условиям: для защемленного по концам стержня при x = 0 и $x = l w = \partial w / \partial x = 0$.

Функцию w(x,t) ищем в виде разложения по формам собственных колебаний упругого стержня $V_i(x)$, которые определяются выражением

$$V_i(x) = (shk_i l - sink_i l)(chk_i x - cosk_i x) - (chk_i l - cosk_i l)(shk_i x - sink_i x)],$$
$$w(x, t) = \sum_{i=1}^n f_i(t) V_i(x),$$

где k_i - корень характеристического уравнения $ch k_i l \cos k_i l = 1$.

Для определения обобщенных перемещений $f_i(t)$ воспользуемся методом Бубнова - Галеркина, в результате чего получим систему обыкновенных дифференциальных уравнений.

Для исследования колебаний стержня с точки зрения их устойчивости используется метод максимальных показателей Ляпунова. Для этого прогиб стержня представляется в виде разложения по формам собственных колебаний упругого стержня. В результате интегро-дифференциальное уравнение, описывающее движение стержня заменяется системой обыкновенных дифференциальных уравнений. Далее под устойчивостью детерминированной системы понимается устойчивость по отношению к возмущению начальных условий (устойчивость в смысле Ляпунова).

3. Результаты расчета

Сначала оценим влияние числа членов n в разложении прогиба по формам собственных колебаний на значение максимального показателя Ляпунова. В том случае, когда стержень находится под действием постоянной во времени продольной силы, оценки значений максимального показателя Ляпунова λ , полученные при $\mu l = 10$, приведены в таблице 1.

Заметим, что стержень оказывается устойчивым, если $\lambda < 0$ и неустойчивым, если $\lambda > 0.$

Далее оценим влияние нелокального демпфирования на степень устойчивости стержня. С этой целью в таблице 2 приведены значения λ , полученные при n = 5, и тех же значениях остальных параметров, кроме μl .

Интересно сопоставить эти результаты с теми, который имеет место при классической постановке задачи (при локальном внутреннем демпфировании, учитываемом с помощью гипотезы Фойхта). В этом случае колебания стержня описываются следующими уравнениями

$$(d^{2} f_{j}(\tau)/d\tau^{2}) + (k_{j}/k_{1})^{4} f_{j}(\tau) + 2\epsilon (k_{j}/k_{1})^{4} [df_{i}(\tau)/d\tau] + 4\pi^{2} \alpha/(k_{1}l)^{4} \sum_{i=1}^{n} b_{ji}^{o}/a_{j}^{o} f_{i}(\tau) = 0, \quad j = 1, 2, ..., n,$$

где $\alpha = F/F_{cr}$, F_{cr} – минимальная критическая сжимающая сила, При $\alpha_0 = 0, 5, \epsilon = 0, 1$ велична λ равна 0,1.

Таблица 1. Оценки максимального показателя Ляпунова в зависимости от числа *n*.

n	$\Delta \tau$	au	λ
1	0,1	2.10^4	-0.0576
3	0,1	2.10^{4}	-0.0598
5	0,1	2.10^{5}	-0.0600
11	0,01	2.10^{5}	-0.0600

Нужно заметить, что при постоянной продольной силе можно было бы определить формы собственных колебаний и соответствующие им характеристические числа и тогда решение задачи о параметрических колебаниях стержня с локальным демпфированием свелось бы к рассмотрению только одного уравнения.

В таблице 2 представлены значения λ как функции параметра μl .

Таблица 2. Зависимость максимального показателя Ляпунова от числа	еля Ляпунова от числа	показателя Ј	максимального	Зависимость	Таблица 2.
---	-----------------------	--------------	---------------	-------------	------------

μl	$\Delta \tau$	au	λ
1	0,1	2.10^4	-0.0024
10	0,1	2.10^{4}	-0.0600
100	0,1	2.10^{5}	-0.0974
1000	0,01	2.10^{5}	-0.1000

Как видно, учет нелокальности демпфирования может оказывать существенное влияние на степеень устойчивости стержня при действии постоянной продольной сжимающей силы, т.к. с уменьшением параметра μl , характеризующего степень нелокальности демпфирования, максимальный показатель Ляпунова λ заметно увеличивается.

Как и следовало ожидать, при увеличении μl значения максимального показателя Ляпунова приближаются к значению λ в случае локального демпфирования.

Но особенно заметным факт существенного влияния нелокального демпфирования на степень устойчивости стержня становится в случае периодической продольной силы.

В качестве такой силы для примера рассмотрим дополнительно к постоянной составляющей косинусоидальную часть нагрузки, при которых безразмерная функция $\alpha(\tau)$ принимает вид $\alpha(\tau) = \alpha_0 + \alpha_1 \cos \theta \tau$, причем α_1, θ –

6

const.

В таблице 3 приведены значения показателя Лярунова, полученные при исходных данных: $\epsilon = 0, 1; \alpha_0 = 0, 5; \theta = 1, 4; \alpha_1 = 0.2$ и $\alpha_1 = 0, 4$. Эти значения найдены при $n = 5, \Delta \tau = 0.01$ и $\tau = 2.10^5$. При классическом варианте демпфирования имеем $\lambda = -0,0301$.

Таблица 3. Зависимость максимального показателя Ляпунова от числа μl для периодической нагрузки при $\Delta \tau = 0.01$ и $\tau = 2.10^5$.

μl	λ при $\alpha_1 = 0, 2$	λ при $\alpha_1 = 0, 4$
1	0,0665	0,1355
10	0.0094	0,0783
100	-0,0272	0.0415
1000	-0.0272	0.0385

Наконец, рассмотрим вариант случайной нагрузки, для которой функция $\alpha(\tau)$ представляется выражением $\alpha(\tau) = \alpha_0 + \alpha^o(\tau)$, где α_0 - const, $\alpha^o(\tau)$ - случайный стационарный нормальный процесс с нулевым математическим ожиданием и корреляционной функцией

$$K(\tau_1 - \tau_2) = \sigma^2 \exp(-\delta|\tau_1 - \tau_2|) \left[\cos\theta(\tau_1 - \tau_2) + (\delta/\theta) \sin\theta(\tau_1 - \tau_2)\right].$$
 (8)

Здесь σ^2 - дисперсия процесса, δ , θ - параметры, характеризующие масштаб корреляции и частоту скрытой периодичности изменения силы.

Спектральная плотность $S(\omega)$ имеет вид

$$S(\omega) = \frac{2\sigma^2\delta}{\pi} \frac{\delta^2 + \theta^2}{(\omega^2 - \theta^2 - \delta^2)^2 + 4\delta^2\omega^2}.$$

В таблице 4 приведены значения λ , полученные при $n = 5, \Delta \tau = 0, 01; \tau = 2.10^5$ для $\alpha_0 = 0, 5; \sigma^2 = 0, 04$ и 0, 16, $\delta = 0, 5; \theta = 1, 4$. При локальном демпфировании имеем соответственно: $\lambda = -0.0811$ при $\sigma^2 = 0.04$ и $\lambda = -0, 0331$ при $\sigma^2 = 0, 16$.

Таблица 4. Зависимость максимального показателя Ляпунова от числа μl для случайной стационарной нагрузки.

μl	λ при $\sigma^2 = 0,04$	λ при $\sigma^2 = 0, 16$
1	0,0169	0,0635
10	-0,0401	0,0062
100	-0,0773	-0.0313
1000	-0.0810	-0.0349

Более подробную информацию можно получить, ознакомившись со статья-

ми, опубликованными автором и перечнь которых приведен ниже.

Список литературы

- Ahmadi, G., 1975. Linear theory of nonlocal viscoelasticity. International Journal of Non - Linear Mechanics 10 (2), 253 - 258.
 Arnold, L., 1998. Random dynamical systems. Springer, Berlin.
- [2] Banks, H. T., Inman, D. J., 1991. On damping mechanisms in beams. Journal of Applied Mechanics 58 (3), 716 - 723.
- [3] Benettin, G., Galgani, L., Giorgolly, A., Strelcyn, J. M., 1980. Liapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. P. 1, 2. Meccanica 15 (1), 9 - 20, 21 - 30.
- [4] Eringen, A. C., Edelen, B. L., 1972. Nonlocal elasticity. International Journal of Engineering Science 10 (3), 233 - 248.
- [5] Filippov, A. P., 1970. Oscillations of deformed systems. Mashinostroenie, Moscow. (in Russian).
- [6] Kumar, D., Heinrich, C., Waas, A. M., 2008. Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories. Journal of Applied Physics 103, 073521.
- [7] Lei, Y., Friswell, M. I., Adhikari, S., 2006. A Galerkin method for distributed systems with non-local damping. International Journal of Solids and Structures 43, 3381 - 3400.
- [8] Потапов В.Д. О влиянии упруго-пластических свойств материала на устойчивость стержней при детерминировыанном и стохастическом параметрическом нагружении. Проблемы машиностроения и теории надежности машин. 2012, є 2, стр. 25 -31.
- [9] Potapov V.D. Effect of elastic and plastic material properties on stability of bars at determinate and stochastic parametric loading. J. of Machinery

Manufacture and Reliability, 2012, V. 41, N 2, pp. 120 -125.

- [10] Потапов В. Д. Устойчивость стержней при стохастическом нагружении с учетом нелокального демпфирования. Проблемы машиностроения и теории надежности, 2012, є 4, сс. 25 - 31.
- [11] V. D. Potapov. On the Stability of Rods under Stochastic Loading Considering Nonlocal Damping. Journal of Machinery Manufacture and Reliability. 2012, V. 41, e4, pp. 284 - 290.
- [12] Potapov V.D. Stability via nonlocal continuum mechanics. International Journal of Solids and Structures. 2013, V. 50, N 5, pp. 637 - 641.
- [13] 6. Potapov V. D. Stability of a rod subjected to a random stationary longitudinal force considering transverse shear. Journal of Machinery Manufacture and Reliability. 2013, V. 42, N 2, pp. 95 - 101.
- [14] Sears, A., Batra, R. C., 2004. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B 69 (23), 235406.
- [15] Shalygin, A. P., Palagin, Yu. I., 1986. Applied methods of statistical simulation. Mashinostroenie, Leningrad division, Leningrad.
- [16] Sudak, L. J., 2003. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. Journal of Applied Physics 94, 7281 - 7287.
- [17] Tylikowski, A., 2006. Dynamic stability of carbon nanotubes. Mechanics and Mechanical Engineering International Journal 10, 160 - 166.
- [18] Zhang, Y. Q., Liu, G. R., and Wang, J. S., 2004. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Physical Review B 70 (20), 205430.
- [19] Zhang, Y. Q., Liu, G. R., and Han, X., 2006. Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure, Physics Letters A, Vol. 349 (5), pp. 370 - 376.